
Distributed Array Protocol
Documentation

Release 0.9.0

Jeff Daily, Brian Granger, Robert Grant, Min Ragan-Kelley, Kurt Smith, Bill Spotz

February 11, 2014

Contents

1 Overview 3

2 Usecases 5

3 Sources 7

4 Definitions 9

5 Exporting a Distributed Array 11

6 Dimension Dictionaries 13
6.1 Required key-value pairs . 13
6.2 Optional key-value pairs . 14
6.3 Distribution-type specific key-value pairs . 14

7 Examples 17
7.1 Block, Undistributed . 17
7.2 Block with padding . 18
7.3 Unstructured . 19

8 References 21

i

ii

Distributed Array Protocol Documentation, Release 0.9.0

Contents

• Distributed Array Protocol v0.9.0
– Overview
– Usecases
– Sources
– Definitions
– Exporting a Distributed Array
– Dimension Dictionaries

* Required key-value pairs
* Optional key-value pairs
* Distribution-type specific key-value pairs

– Examples
* Block, Undistributed
* Block with padding
* Unstructured

– References

Contents 1

Distributed Array Protocol Documentation, Release 0.9.0

2 Contents

CHAPTER 1

Overview

The Distributed Array Protocol (DAP) is a process-local protocol that allows two subscribers, called the “producer”
and the “consumer” or the “exporter” and the “importer”, to communicate the essential data and metadata necessary
to share a distributed-memory array between them. This allows two independently developed components to access,
modify, and update a distributed array without copying. The protocol formalizes the metadata and buffers involved in
the transfer, allowing several distributed array projects to collaborate, facilitating interoperability. By not copying the
underlying array data, the protocol allows for efficient sharing of array data.

The DAP is intended to build on the concepts and implementation of the existing PEP-3118 buffer protocol 1, and uses
PEP-3118 buffers (and subscribing Python objects such as memoryviews and NumPy arrays) as components.

This version of the DAP is defined for the Python language. Future versions of this protocol may provide definitions
in other languages.

1 Revising the Buffer Protocol. http://www.python.org/dev/peps/pep-3118/

3

http://www.python.org/dev/peps/pep-3118/

Distributed Array Protocol Documentation, Release 0.9.0

4 Chapter 1. Overview

CHAPTER 2

Usecases

Major usecases supported by the protocol include:

• Sharing large amounts of array data without copying.

• Block, cyclic, and block-cyclic distributions for structured arrays.

• Padded block distributed arrays for finite differencing applications.

• Unstructured distributions for arbitrary mappings between global indices and local data.

• Multi-dimensional arrays.

• Different distributions for each array dimension.

• Dense (structured) and sparse (unstructured) arrays.

• Compatibility with array views and slices.

5

Distributed Array Protocol Documentation, Release 0.9.0

6 Chapter 2. Usecases

CHAPTER 3

Sources

The primary sources and inspiration for the DAP are:

• NumPy 1 and the Revised Buffer Protocol 4

• Trilinos 2 and PyTrilinos 3

• Global Arrays 4 and Global Arrays in NumPy (GAiN) 5

• The Chapel 6, X10 7, and HP-Fortran 8 languages

• Distributed array implementation in the Julia 9 language

1 NumPy. http://www.numpy.org/
2 Trilinos. http://trilinos.sandia.gov/
3 PyTrilinos. http://trilinos.sandia.gov/packages/pytrilinos/
4 Global Arrays. http://hpc.pnl.gov/globalarrays/
5 Global Arrays in NumPy. http://www.pnnl.gov/science/highlights/highlight.asp?id=1043
6 Chapel. http://chapel.cray.com/
7 X10. http://x10-lang.org/
8 High Perfomance Fortran. http://dacnet.rice.edu/
9 Julia. http://docs.julialang.org

7

http://www.numpy.org/
http://trilinos.sandia.gov/
http://trilinos.sandia.gov/packages/pytrilinos/
http://hpc.pnl.gov/globalarrays/
http://www.pnnl.gov/science/highlights/highlight.asp?id=1043
http://chapel.cray.com/
http://x10-lang.org/
http://dacnet.rice.edu/
http://docs.julialang.org

Distributed Array Protocol Documentation, Release 0.9.0

8 Chapter 3. Sources

CHAPTER 4

Definitions

process A “process” is the basic unit of execution and is as defined in MPI 1. It is also analogous to an IPython.parallel
2 engine. Each process has an address space, has one or more namespaces that contain objects, and is able to
communicate with other processes to send and receive data.

distributed array A single logical array of arbitrary dimensionality that is divided among multiple processes.

A distributed array has both a global and a local index space for each dimension, and a mapping between the
two index spaces.

local index A local index specifies a location in an array’s data at the process level.

global index A global index specifies a location in the array’s data as if the array were not distributed.

map A map object provides two functionalities: the first is the ability to translate a global index into a process
identifier and a local index on that process; the second is the ability to provide the global index that corresponds
to a given local index.

boundary padding Padding indices in a local array that indicate which indices are part of the logical boundary of
the entire domain. These are physical or real boundaries and correspond to the elements or indices that are
involved with the physical system’s boundary conditions in a PDE application, for example. These boundary
padding elements would exist even if the array were not distributed. These elements are included in a distributed
dimension’s ’size’.

communication padding Padding indices that are shared logically with a neighboring local array. These padding
regions are used often in finite differencing applications and reserve room for communication with neighboring
arrays when data updates are required. Each of these shared elements are only counted once toward the ’size’
of each distributed dimension, so the total ’size’ of a dimension will less than or equal to the sum of the sizes
all local buffers.

1 Message Passing Interface. http://www.open-mpi.org/
2 IPython Parallel. http://ipython.org/ipython-doc/dev/parallel/

9

http://www.open-mpi.org/
http://ipython.org/ipython-doc/dev/parallel/

Distributed Array Protocol Documentation, Release 0.9.0

10 Chapter 4. Definitions

CHAPTER 5

Exporting a Distributed Array

A “producer” object that subscribes to the DAP shall provide a method named __distarray__ that, when called
by a consumer, returns a dictionary with three keys: ’__version__’, ’buffer’, and ’dim_data’.

The value associated with the ’__version__’ key shall be a string of the form ’major.minor.patch’, as
described in the Semantic Versioning specification 1 and PEP-440 2. As specified in Semantic Versioning, versions of
the protocol that differ in the minor version number shall be backwards compatible; versions that differ in the major
version number may break backwards compatibility.

The value associated with the ’buffer’ key shall be a Python object that is compatible with the PEP-3118 buffer
protocol and contains the data for a local section of a distributed array.

The value for the ’dim_data’ key shall be a tuple of dictionaries, called “dimension dictionaries”, containing one
dictionary for each dimension of the distributed array, with the zeroth dictionary associated with the zeroth dimension
of the array, and so on for each dimension in succession. There is one dimension dictionary per dimension, whether
or not that dimension is distributed. These dictionaries are intended to include all metadata required to fully specify
a distributed array’s distribution information.

1 Semantic Versioning 2.0.0. http://semver.org/
2 PEP 440: Version Identification and Dependency Specification. http://www.python.org/dev/peps/pep-0440/

11

http://semver.org/
http://www.python.org/dev/peps/pep-0440/

Distributed Array Protocol Documentation, Release 0.9.0

12 Chapter 5. Exporting a Distributed Array

CHAPTER 6

Dimension Dictionaries

All dimension dictionaries shall have a ’dist_type’ key with a value of type string. The dist_type of a
dimension specifies the kind of distribution for that dimension (or no distribution for value ’n’).

The following dist_types are currently supported:

name dist_type required keys
undistributed ‘n’ ‘dist_type’, ‘size’
block ‘b’ common, ‘start’, ‘stop’
cyclic ‘c’ common, ‘start’
unstructured ‘u’ common, ‘indices’

where “common” represents the keys common to all distributed dist_types: ’dist_type’, ’size’,
’proc_grid_size’, and ’proc_grid_rank’.

Other dist_types may be added in future versions of the protocol.

6.1 Required key-value pairs

All dimension dictionaries (regardless of distribution type) must define the following key-value pairs:

• ’dist_type’ : {’n’, ’b’, ’c’, ’u’}

The distribution type; the primary way to determine the kind of distribution for this dimension.

• ’size’ : int, >= 0

Total number of global array elements along this dimension.

All distributed dimensions shall have the following keys in their dimension dictionary, with the associated value:

• ’proc_grid_size’ : int, >= 1

The total number of processes in the process grid in this dimension. Necessary for computing the global / local
index mapping, etc.

Constraint: the product of all proc_grid_sizes for all distributed dimensions shall equal the total number of
processes in the communicator.

• proc_grid_rank : int

The rank of the process for this dimension in the process grid. This information allows the consumer to deter-
mine where the neighbor sections of an array are located.

13

Distributed Array Protocol Documentation, Release 0.9.0

The MPI standard guarantees that Cartesian process coordinates are always assigned to ranks in the same way
1.

6.2 Optional key-value pairs

• ’periodic’ : bool

Indicates whether this dimension is periodic. When not present, indicates this dimension is not periodic, equiv-
alent to a value of False.

6.3 Distribution-type specific key-value pairs

The remaining key-value pairs in each dimension dictionary depend on the dist_type and are described below:

• undistributed (dist_type is ’n’):

– padding : optional. see same key under block distribution.

• block (dist_type is ’b’):

– start : int, greater than or equal to zero.

The start index (inclusive and 0-based) of the global index space available on this process.

– stop : int, greater than the start value

The stop index (exclusive, as in standard Python indexing) of the global index space available on this
process.

For a block-distributed dimension, adjacent processes as determined by the dimension dictionary’s
proc_grid_rank field shall have adjacent global index ranges, i.e., for two processes a and b with
grid ranks i and i+1 respectively, the stop of a shall be equal to the start of b. Processes may
contain differently-sized global index ranges.

– padding : 2-tuple of int, each greater than or equal to zero. Optional.

When present, indicates the number of “padding” values at the lower and upper limits (respectively) of
the indices available on this process. This padding can be either “boundary padding” or “communication
padding”. When not present, indicates that the distributed array is not padded in this dimension on any
process.

Whenever an element of the padding tuple is > 0 and the padding is on an internal edge of the process
grid (or the dimension is periodic), that indicates this is “communication padding”, and the communication
padding elements do not count towards the size of the array in this dimension. In other words, the array
shares the indicated number of indices with its neighbor (as determined by proc_grid_rank), and
further, this neighboring process owns the data. When an element of the padding tuple is > 0 and the
padding is on an external edge of the process grid (and the dimension is not periodic), that indicates that
this is “boundary padding”.

Padding is an all-or-nothing attribute: if the padding keyword is present in any dimension dictionary for
a dimension of the distributed array, then the padding keyword shall be present on all processes for the
same dimension dictionary. The value associated with padding can be the tuple (0,0) indicating that
this local array is not padded in this dimension, but other local arrays may be padded in this dimension.

• cyclic (dist_type is ’c’):

1 MPI-2.2 Standard: Virtual Topologies. http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node165.htm#Node165

14 Chapter 6. Dimension Dictionaries

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node165.htm#Node165

Distributed Array Protocol Documentation, Release 0.9.0

– start : int, greater than or equal to zero.

The start index (inclusive, 0-based, and in the global index space) available on this process.

The cyclic distribution is what results from assigning global indices–or contiguous blocks of indices, in the
case when block_size is greater than one–to processes in round-robin fashion. When block_size
equals one, a constraint for cyclic is that the Python slice formed from the start, size, and
proc_grid_size values reproduces the local array’s indices as in standard NumPy slicing.

– block_size : int, greater than or equal to one. Optional.

Indicates the size of the contiguous blocks for this dimension. If absent, equivalent to the case when
block_size is present and equal to one.

If block_size == 1, then this is the “true” cyclic distribution as specified by ScaLAPACK 2; if 1 <
block_size < size // proc_grid_size, then this dist type specifies the block-cyclic distribu-
tion 16 3. Block-cyclic can be thought of as analogous to the cyclic distribution, but it distributes contiguous
blocks of global indices in round robin fashion rather than single indices. In this way block-cyclic is a gen-
eralization of the block and cyclic distribution types (for an evenly distributed block distribution). When
block_size == ceil(size / proc_grid_size), block cyclic is equivalent to block.

• unstructured (dist_type is ’u’):

– indices: buffer (or buffer-compatible) of int

Global indices available on this process.

The only constraint that applies to the indices buffer is that the values are locally unique. The indices
values are otherwise unconstrained: they can be negative, unordered, and non-contiguous.

– one_to_one : bool, optional.

If not present, shall be equivalent to being present with a False value.

If False, indicates that some global indices may be duplicated in two or more local indices buffers.

If True, a global index shall be located in exactly one local indices buffer.

2 ScaLAPACK Users’ Guide: The Two-dimensional Block-Cyclic Distribution. http://netlib.org/scalapack/slug/node75.html
3 Parallel ESSL Guide and Reference: Block-Cyclic Distribution over Two-Dimensional Process Grids.

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=%2Fcom.ibm.cluster.pessl.v4r2.pssl100.doc%2Fam6gr_dvtdpg.htm

6.3. Distribution-type specific key-value pairs 15

http://netlib.org/scalapack/slug/node75.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=%2Fcom.ibm.cluster.pessl.v4r2.pssl100.doc%2Fam6gr_dvtdpg.htm

Distributed Array Protocol Documentation, Release 0.9.0

16 Chapter 6. Dimension Dictionaries

CHAPTER 7

Examples

7.1 Block, Undistributed

Assume we have a process grid with 2 rows and 1 column, and we have a 2x10 array a distributed over it. Let a be a
two-dimensional array with a block-distributed 0th dimension and an undistributed 1st dimension.

In process 0:

>>> distbuffer = a0.__distarray__()
>>> distbuffer.keys()
[’__version__’, ’buffer’, ’dim_data’]
>>> distbuffer[’__version__’]
’0.9.0’
>>> distbuffer[’buffer’]
array([0.2, 0.6, 0.9, 0.6, 0.8, 0.4, 0.2, 0.2, 0.3, 0.5])
>>> distbuffer[’dim_data’]
({’size’: 2,

’dist_type’: ’b’,
’proc_grid_rank’: 0,
’proc_grid_size’: 2,
’start’: 0,
’stop’: 1},

{’size’: 10,
’dist_type’: ’n’})

In process 1:

>>> distbuffer = a1.__distarray__()
>>> distbuffer.keys()
[’__version__’, ’buffer’, ’dim_data’]
>>> distbuffer[’__version__’]
’0.9.0’
>>> distbuffer[’buffer’]
array([0.9, 0.2, 1. , 0.4, 0.5, 0. , 0.6, 0.8, 0.6, 1.])
>>> distbuffer[’dim_data’]
({’size’: 2,

’dist_type’: ’b’,
’proc_grid_rank’: 1,
’proc_grid_size’: 2,
’start’: 1,
’stop’: 2},

{’size’: 10,
’dist_type’: ’n’})

17

Distributed Array Protocol Documentation, Release 0.9.0

7.2 Block with padding

Assume we have a process grid with 2 processes, and we have an 18-element array a distributed over it. Let a be a
one-dimensional array with a block-padded distribution for its 0th (and only) dimension.

Since the ’padding’ for each process is (1, 1), the local array on each process has one element of padding on
the left and one element of padding on the right. Since each of these processes is at one edge of the process grid (and
the array has no ’periodic’ dimensions), the “outside” element on each local array is an example of “boundary
padding”, and the “inside” element on each local array is an example of “communication padding”. Note that the
’size’ of the distributed array is not equal to the combined buffer sizes of a0 and a1 , since the communication
padding is not counted toward the size (though the boundary padding is).

For this example, the global index arrangement on each processor, with ‘B’ for boundary and ‘C’ for communication
elements, are arranged as follows:

Process 0: B 1 2 3 4 5 6 7 8 C
Process 1: C 9 10 11 12 13 14 15 16 B

The ‘B’ element on process 0 occupies global index 0, and the ‘B’ element on process 1 occupies global index 17.
Each ‘B’ element counts towards the array’s size. The communication elements on each process overlap with a data
element on the other process to indicate which data elements these communication elements are meant to communicate
with.

The protocol data structure on each process is as follows.

In process 0:

>>> distbuffer = a0.__distarray__()
>>> distbuffer.keys()
[’__version__’, ’buffer’, ’dim_data’]
>>> distbuffer[’__version__’]
’0.9.0’
>>> distbuffer[’buffer’]
array([0.2, 0.6, 0.9, 0.6, 0.8, 0.4, 0.2, 0.2, 0.3, 0.9])
>>> distbuffer[’dim_data’]
({’size’: 18,

’dist_type’: ’b’,
’proc_grid_rank’: 0,
’proc_grid_size’: 2,
’start’: 0,
’stop’: 9,
’padding’: (1, 1)})

In process 1:

>>> distbuffer = a1.__distarray__()
>>> distbuffer.keys()
[’__version__’, ’buffer’, ’dim_data’]
>>> distbuffer[’__version__’]
’0.9.0’
>>> distbuffer[’buffer’]
array([0.3, 0.9, 0.2, 1. , 0.4, 0.5, 0. , 0.6, 0.8, 0.6])
>>> distbuffer[’dim_data’]
({’size’: 18,

’dist_type’: ’b’,
’proc_grid_rank’: 1,
’proc_grid_size’: 2,
’start’: 9,

18 Chapter 7. Examples

Distributed Array Protocol Documentation, Release 0.9.0

’stop’: 18,
’padding’: (1, 1)})

7.3 Unstructured

Assume we have a process grid with 3 rows, and we have a size 30 array a distributed over it. Let a be a one-
dimensional unstructured array with 7 elements on process 0, 3 elements on process 1, and 20 elements on process
2.

On all processes:

>>> distbuffer = local_array.__distarray__()
>>> distbuffer.keys()
[’__version__’, ’buffer’, ’dim_data’]
>>> distbuffer[’__version__’]
’0.9.0’
>>> len(distbuffer[’dim_data’]) == 1 # one dimension only
True

In process 0:

>>> distbuffer[’buffer’]
array([0.7, 0.5, 0.9, 0.2, 0.7, 0.0, 0.5])
>>> distbuffer[’dim_data’]
({’size’: 30,

’dist_type’: ’u’,
’proc_grid_rank’: 0,
’proc_grid_size’: 3,
’indices’: [19, 1, 0, 12, 2, 15, 4]},)

In process 1:

>>> distbuffer[’buffer’]
array([0.1, 0.5, 0.9])
>>> distbuffer[’dim_data’]
({’size’: 30,

’dist_type’: ’u’,
’proc_grid_rank’: 1,
’proc_grid_size’: 3,
’indices’: [6, 13, 3]},)

In process 2:

>>> distbuffer[’buffer’]
array([0.1, 0.8, 0.4, 0.8, 0.2, 0.4, 0.4, 0.3, 0.5, 0.7,

0.4, 0.7, 0.6, 0.2, 0.8, 0.5, 0.3, 0.8, 0.4, 0.2])
>>> distbuffer[’dim_data’]
({’size’: 30,

’dist_type’: ’u’,
’proc_grid_rank’: 2,
’proc_grid_size’: 3,
’indices’: [10, 25, 5, 21, 7, 18, 11, 26, 29, 24, 23, 28, 14,

20, 9, 16, 27, 8, 17, 22]},)

7.3. Unstructured 19

Distributed Array Protocol Documentation, Release 0.9.0

20 Chapter 7. Examples

CHAPTER 8

References

21

	Overview
	Usecases
	Sources
	Definitions
	Exporting a Distributed Array
	Dimension Dictionaries
	Required key-value pairs
	Optional key-value pairs
	Distribution-type specific key-value pairs

	Examples
	Block, Undistributed
	Block with padding
	Unstructured

	References

